
原子力発電所の地震の揺れや津波・浸水への対策

■原子力発電所と一般建築物の揺れの差 堅固な地盤(岩盤)上に設置した原子力発電所と 一般の建物の揺れの伝わり方 A.増幅された表層地盤での加速度 B.堅固な地盤(岩盤)での加速度 (注)地震波形は模式図 原子力発電所 一般の建物 A 表層地盤 岩盤 震源 堅固な地盤(岩盤)での揺れは表層地盤に比べ1/2~1/3程度

|耐震強化の例(配管サポート改造工事)

基準地震動策定の流れ

内陸地殼内地震

海洋プレート内地震

※建物に作用する地震力の大きさを知るため

固有周期を持つ建物に対して地震の力がどの

ような揺れ(応答)を生じさせるかを描いたもの

プレート間地震

写真提供:中部雷力(株

の用

出典・雷力会社などの資料より作成

₹子力発電所の耐震設計

基準地震動は、「施設を使用している間に極めてま れではあるが、発生する可能性があり、施設に大きな 影響を与えるおそれがあると想定することが適切な地 震動 | とされています。これに対し、安全上重要な施設 の機能が失われず、また、地震の影響により周辺に著 しい放射線被ばくのリスクを与えない耐震設計が求め られています。

原子力発電所では、この基準地震動の策定にあたって、 まず文献などによる過去の地震の調査や、内陸地殼内 地震、プレート間地震、海洋プレート内地震などの発生様 式ごとの地震の調査、活断層の調査などが行われます。

そして、敷地への影響が大きな地震を選び、その地震 動が評価されます。さらに、内陸地殻内の地震のすべて を事前に評価できるとは限らないことから、震源を特定し ない地震も考慮されます。

原子力発電所は、原子力規制委員会の適合審査で了 承された基準地震動に耐えられるように設計されています。 それは、設定値以上の揺れを感知した場合、制御棒を挿 入して原子炉を自動的に停止させること、その後に安定的 に炉心を冷却させる設備や放射性物質を閉じ込める設備 などを厳格に設計することにより実現されます。

新規制基準を踏まえた耐震性の向上

地下のプレートが動く地殻変動などによって、押したり 引いたりする力が加わることで、地下の地層や岩盤が ずれます。その動いた跡を「断層」といいます。そのなか で、過去にくり返し動き、将来も動く可能性がある断層を 「活断層 |といい、地震を起こしたり、地表に大きなずれ を生じさせたりする可能性があります。

活断層を見つけるためには、空中写真を観察して平 坦地の段差などをチェックする 「空中写真判読 | や地面

に溝(トレンチ)を掘って断層活動の履歴を調べる「トレン チ調査 |などの地形学的手法が用いられています。

さらに、起振車などの振動源から人工的な地震波を発 射し、その反射波から地下の構造を把握する「反射法地 震探査」などの地球物理学的手法も用いられています。

新規制基準では、活断層や地下構造の調査が改めて求 められています。

活断層については、後期更新世以降(約12万~13万年 前以降)の地層に断層によるずれや変形がないかが確認さ れます。必要な場合は、さらに、中期更新世以降(約40万年 前以降)までさかのぼって活動性が確認されています。活断 層が動いた場合、建屋が損傷し、内部の機器などが損傷す るおそれがあるため、耐震設計上の重要度Sクラスの建物・ 構築物などは、活断層が表土に直接、露出していない地盤 に設置されます。

また、原子力発電所の敷地の地下構造により、地震動が 増幅される場合があることを踏まえ、地下構造を三次元的に 把握し、必要に応じて基準地震動の見直しや耐震強化の 対策が進められています。

聿波・浸水への対策

津波は、プレート間地震、海洋プレート内地震、海域の活 断層による地殻内地震などの地震により、海底面の降起や 沈降などの変動によって海面に大きな波動が生じることで発 生します。また、津波は陸上や海底での地すべりや斜面崩 壊、火山活動などの地震以外の要因によっても発生します。 このような津波発生の要因が組み合わさった場合の津波の 大きさも考慮して、基準津波が策定されています。

新規制基準では、それぞれの発電所ごとに想定される 津波のうち、最も規模が大きいものが「基準津波」として策定 されています。

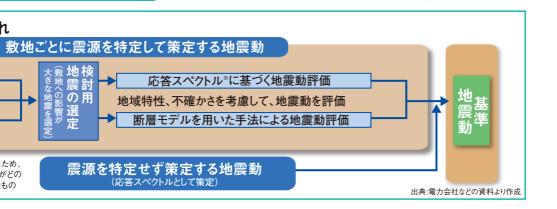
事業者は、基準津波の大きさや敷地の高さを考慮し て、津波の影響が想定される安全上重要な機器の機 能が確保されるように敷地の高さに応じて防波壁や防 潮堤を設置したり、建屋の入り口を水密扉に取り替える などの対策を行っています。

また、トンネルで海につながっている海水取水ポンプなどか ら水が溢れることを防ぐため、周囲に防潮壁を設置するなど の対策を行っています。発電所内で発生する溢水(内部 溢水)についても、施設の安全性が損なわれないように水 の発生源を調べ、適切な防護対策を実施します。

防潮堤の設置

写真提供:北陸雷力(梯

防御辟の設置


写真提供:北陸電力(株)

52

水密扉の設置

写真提供:中部電力(株)

■基準津波策定の流れ 地震による 地震以外の要因による 津波の大きさを評価 津波の大きさを評価 プレート間地震 海域の活断層による 陸上および海底での 火山現象 海洋プレート内地震 地殼内地震 地すべり、斜面崩壊 地震による津波と地震以外の要因による津波の組み合わせ 基準津沢 出典:電力会社などの資料より作成

51